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Consideration is given to problems associated with modeling of the motion of a condensed particle in a
channel with injection with allowance for the action of different force factors (the hydrodynamic-drag
force, the Saffman lift force, and the thermophoresis force). From the results of the numerical modeling,
the author draws conclusions on the degree of influence of different force factors on the pattern of motion
of the particle.

Introduction. Flow in a channel with permeable walls is used as a mathematical model of flow of the prod-
ucts of disintegration of a solid propellant in a rocket-engine combustion chamber and reflects the most significant as-
pect of the process: mass supply on the source side of a burning charge surface [1–3]. Injection models the burning
of the interior channel surface (strong injection) or its thermal destruction (weak injection). Processes associated with
the heating of the propellant and the disintegration of its components and their chemical reaction occur in a thin sur-
face layer and are disregarded in this model.

Metal additions in the form of a highly dispersed powder (mainly aluminum), which are part of many types
of modern mixture solid propellants, are necessary for attainment of the required level of energy characteristics and
damping of uncontrolled acoustic fluctuations of the parameters of a working medium in the combustion chamber. The
quality of modeling of the fluxes of combustion products is largely dependent on the accuracy of description of their
properties.

In this work, consideration is given to problems associated with construction of a model of interaction be-
tween a condensed particle and a carrier flow in a channel with injection. From the results of the numerical modeling,
we draw conclusions on the degree of influence of different force factors (the hydrodynamic-drag force, the Saffman
lift force, and the thermophoresis force) on the pattern of motion of the particle. We propose an approach which
makes it possible to simplify realization of a numerical model of motion of a dispersed impurity in a channel with
permeable walls.

Carrier Phase. Let us consider quasideveloped flow of a viscous incompressible fluid in an infinite plane slit
of width h on both sides of which we have injection with a prescribed intensity (Fig. 1). The condition of quaside-
velopment of the flow implies that the flow characteristics referred to the maximum velocity in the cross section
change only slightly with channel length [2]:
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In injection, such a flow is established behind the region of the inlet portion in fairly long channels.
Let us bring the x axis of the Cartesian system into coincidence with the lower channel wall. We assume that

the spreading of the fluid is symmetric about the plane x = 0.
We select the channel width h as the characteristic scales for variables with the dimensions of length and rate

of injection of the fluid from the upper wall vw2 (it is assumed that vw2 ≠ 0) and the temperature of the upper channel
wall Tw2 as the characteristic scales for variables with the dimensions of velocity and temperature. The characteristic
parameter of the problem is the Reynolds number Re = vw2h ⁄ ν.
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Let us assume that the longitudinal velocity of the fluid changes linearly along the coordinate x, whereas the
transverse velocity component and the temperature are only dependent on the coordinate y:

u = xϕ (y) ,   v = g (y) ,   T = ϑ (y) . (1)

Using (1) and eliminating the pressure from the momentum equations in projections onto the x and y axes by cross
differentiation, we may show that the modeling of a viscous incompressible fluid flow in a channel with injection is
reduced to integration of the equations

g
(4)

 − Re (gg′′′ − g′g′′) = 0 , (2)

ϑ′′ − Pe gϑ′ = 0 . (3)

The dynamic and thermal problems are separated for the incompressible fluid, and (3) is solved after the in-
tegration of (2). Boundary conditions for Eqs. (2) and (3) are set on the lower and upper channel wall and have the
following form:

g = ω ,   g′ = 0 ,   ϑ = θ   at   y = 0 ;

g = − 1 ,   g′ = 0 ,   ϑ = 1   at   y = 1 .

The solution of the boundary-value problem is constructed based on the Newton linearization method with subsequent
iterations by nonlinearity.

Condensed Particle. For high values of the Reynolds number determining the relative flow past a particle,
the dominant influence is exerted by nonlinear iteration effects, whereas the influence of nonstationary effects (fre-
quently defined as hereditary ones) in the gas phase turns out to be very slight. Thus, the ratio of the forces — the
Archimedes force, the additional-mass force, and the Basset force — to the drag force has the order of the ratio of
the gas density to the particle density [4].

The rotation acquired by the particle under the action of the gradient of carrier-flow velocity in many flows
is not so large as to be responsible for the particle’s transverse motion occurring under the influence of the Magnus
force [4].

In the interphase-interaction model, allowance is made for the action of the hydrodynamic-drag force, the
Saffman lift force, and the thermophoretic force. The motion of the particle is described by the following system of
equations:

Fig. 1. Flow in a channel with injection.
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dxp

dt
 = up , (4)

dyp

dt
 = vp , (5)

dup

dt
 = 

9µ

2ρprp
2 φd (u − up) + 

1

mp

 (fSx + ftx) , (6)

dvp

dt
 = 

9µ

2ρprp
2 φd (v − vp) + 

1

mp

 (fSy + fty) . (7)

The drag coefficient of the particle is represented in the form

Cd = 
24

Rep
 φd (Rep) .

The function φd allows for the correction for the particle’s inertia [4]:

φd (Rep) = 1 + 0.179 Rep
0.5

 + 0.013 Rep .

The Reynolds number in relative motion of the particle and the carrier gas is found as

Rep = 
2rpρ v − vp

µ
 .

The projections of the Saffman lift force onto the axes of the Cartesian coordinate systems are computed from the for-
mulas [5, 6]

fSx = CSφSrp
2ρ √ν  (v − vp) 

∂v ⁄ ∂x
∂v ⁄ ∂x

 ,

fSy = CSφSrp
2ρ √ν  (u − up) 

∂u ⁄ ∂y
∂u ⁄ ∂y

 .

Here we have CS = 6.46, and the function φS allows for corrections related to the inertia of the particle, the velocity
gradient of the fluid, and the proximity of the wall [7, 8]. In a shear flow, the lift-force coefficient is represented in
the following form:

CS (α, η) = 6.46fS (α, η) ,   α = 
Rep

√Rep,v
 ,   η = y √Re∞  .

The Reynolds number characterizing the degree of nonuniformity of the flow is calculated from the in-plane shear of
the velocity du/dy and the particle size:

Rep,v = 
rp
2ρ
µ

 




du

dy



 .

Specific dependences for the function φS have been given in [7, 8].
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To compute the components of the thermophoresis force in a continuous regime of flow we use the relations
[4, 9]

ftx = − 12πCtrpρν
2
 

λ ⁄ λp

1 + 2λ ⁄ λp
 
∂ (T ⁄ T∞)

∂x
 ,

fty = − 12πCtrpρν
2
 

λ ⁄ λp

1 + 2λ ⁄ λp
 
∂ (T ⁄ T∞)

∂y
 .

Here we have Ct = 1.17.
Taking into account that, by virtue of relations (1), the projections of the lift force and the thermophoresis

force onto the x axis are equal to zero, we write Eqs. (6) and (7) as follows:

dup

dt
 = Bdφd [xpϕ (yp) − up] ,

dvp

dt
 = Bdφd [g (yp) − vp] + BSφS [xpϕ (yp) − up] √xp  

ϕ′ (yp)

√ϕ′ (yp)
 + Btϑ′ (yp) ,

where

Bd = 
9

2
 
ρ
ρp

 




rp
h




−2

 
1

Re
 ;

BS = 
3CS

4π
 
ρ
ρp

 




rp

h




−1

 
1

√Re
 ;

Bt = − 9Ct 
ρ

ρp

 
λ ⁄ λp

1 + 2λ ⁄ λp

 




rp

h





−2

 
1

Re
2 .

The coordinates of the particle are determined from Eqs. (4) and (5).
At the initial instant of time, the particle is on the channel wall and is injected into the channel along the

normal to its lateral surface; therefore, we have

xp (0) = xp0 ,   yp (0) = % 1 ,   up (0) = 0 ,   vp (0) = & χ   at   t = 0 .

The upper and lower signs are taken for particles escaping from the upper and lower channel walls respectively.
The equations describing the particle’s motion are integrated using the implicit Euler method. To complete the

gasdynamic characteristics of the fluid at the points lying on the particle’s trajectory we use cubic spline interpolation.
Exact Solution for the Case of Strong Injection. When Re → ∞, Eq. (2) has an exact solution. In the case

ω = 1, the distributions of the components of the carrier-medium velocity are found from the relations [1]

u = 
π
2

 (s + 1) x cos 




π
2

 y
s+1



 ,

v = − y
−s

 sin 




π
2

 y
s+1



 .

A comparison to the calculated results and the data of physical experiment shows that the exact solution fairly well
describes the velocity distribution in a channel with injection for Re > 80, including the turbulent regime of flow, if
x < 30–50 [1–3].
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With allowance for the action of just the hydrodynamic-drag force, the equation of motion of a Stokes particle
in a channel with intense injection acquires the form

dup

dt
 = Bd 




π
2

 (s + 1) xp cos 




π
2

 yp
s+1



 − up




 ,

dvp

dt
 = − Bd 




yp
−s

 sin 




π
2

 yp
s+1



 + vp




 .

The coordinates of the particle are found from Eqs. (4) and (5).
The particle’s motion in the transverse (radial) direction is described by the expression

d
2
yp

dt
2

 + Bd 
dyp

dt
 + Bdyp

−s
 sin 





π

2
 yp

s+1


 = 0 . (8)

In the axial region (for yp → 0), the nonlinear term allows linearization of the form

yp
−s

 sin 




π
2

 yp
s+1



 D 

π
2

 yp .

Then Eq. (8) takes the form

d
2
yp

dt
2  + Bd 

dyp

dt
 + 

π

2
 Bdyp = 0 , (9)

and its solution is dependent on the sign of the discriminant ∆ = Bd
2 − 2πBd.

The equations of motion of the particle in the longitudinal (axial) direction will be written as

d
2
xp

dt
2  + Bd 

dxp

dt
 − 

π

2
 (s + 1) Bdxp cos 





π

2
 yp

s+1


 = 0 . (10)

Let us linearize the nonlinear term in the axial region:

π
2

 (s + 1) xp cos 




π
2

 yp
s+1



 D 

π
2

 (s + 1) xp .

After substituting it into (10), we obtain the equation

π
2

 (s + 1) xp cos 




π
2

 yp
s+1



 D 

π
2

 (s + 1) xp .

Noteworthy is the existence of two qualitatively different forms of transverse motion of a particle in the
channel with injection. The solution of Eq. (9) for Bd > 2π (small particles) is aperiodic in character: the channel
axis is an asymptote for the trajectories of particles. The solution of Eq. (9) for Bd < 2π (large particles) allows the
intersection of the particle’s trajectory and the channel axis. The value Bd = 2π is the criterion of the particle cross-
ing the channel axis.

Impurity-Concentration Distribution. The concentration of the impurity at the instant of time t is found
from the continuity equation written in Lagrange variables:





xp

xp0





s

 np (xp0, yp0, t) 
∂yp (xp0, yp0, t)

∂t
 
∂xp (xp0, yp0, t)

∂xp0
 + 1 = 0 . (11)
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In the region of small particles (for Bd > 2π), the concentration of the dispersed phase has a singularity near the chan-
nel axis (np(rp) → ∞ for rp → 0). Let us denote a sphere with a radius r and its center on the channel axis by S(r).
We compute the number of particles within this sphere:

N (r) = ∫ 
S

npdr .

Using Eq. (11), we may show, analogously to [10], that

N (r) = Cr
γ
 + o (rγ) .

The exponent γ determines the order of the singularity of the concentration of the dispersed phase (1 + √2  < γ < 3 for
s = 0 and 2√3  < γ < 3 for s = 1). The singularity of the concentration of particles for rp → 0 is integrable; the singu-
larity becomes weaker as the particle size increases [10].

Time of Residence of a Particle in the Channel. Let us consider the equation of motion of a particle

up 
dup

dx
 = Bd (u − up) . (12)

The above equation allows a solution of the form

up = ku ,   k = 
√Bd

2 + 4Bd  − Bd

2
 . (13)

Using it, we may evaluate the character of retardation of particles in internal flows whose gasdynamics is similar to
the structure of flow in a channel with permeable walls.

Let us carry out evaluation for the time of residence of a particle in the channel portion of flow. We write
the equations of motion of a portion of the fluid:

dx
dt

 = 
π
2

 (s + 1) x cos 




π
2

 y
s+1



 ,

dy
dt

 = − y
−s

 sin 




π
2

 y
s+1



 .

We separate the variables and eliminate the transverse coordinate:

dx
x

 = 
π
2

 (s + 1) 
1 − exp [− π (s + 1) t]
1 + exp [− π (s + 1) t]

 .

Integrating from 0 to t, we obtain the time of motion of the medium’s portion along an arbitrary streamline as a func-
tion of the channel length:

tf = 
2

π (s + 1)
 ln 










L
x0

 − √



L
x0





2

 − 1  









 .

For a fixed channel length, the residence time of a fluid particle on the arbitrary streamline (if x0 ≠ 0) is finite,
whereas for x0 = 0 the residence time of the medium’s portion in the channel becomes infinitely long.

A rough evaluation of the residence time of a condensed particle in the channel with injection is given by the
relation

tp = 
tf
k

 = 
2tf

√Bd
2 + 4Bd  − Bd

 .
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Calculation Results. The influence of viscosity manifests itself as an insignificant filling of the profile of the
longitudinal velocity component in the central part of the channel. Increase in the Reynolds number leads to a decrease
in the role of viscous stresses in formation of the flow pattern (Fig. 2). When Re > 103 the solution is virtually inde-
pendent of the Reynolds number, and when ω = 1 (bilateral injection of the same intensity) the velocity distribution
is fairly well described by the solution for vortex nonviscous-liquid flow in a channel with injection [1–3].

As the rate of injection from the surface y = 0 increases, the independence of the solution from the Reynolds
number occurs for its lower values (it is equal to approximately 80 for ω = 1). For low ω (weak injection from the
lower surface), the geometric position of the maximum of the longitudinal-velocity-component distribution approaches
the lower wall, and the surface flow itself becomes similar to the flow in the boundary layer on an impermeable sur-
face. The profiles of the transverse component of the velocity vector change over the channel cross section relatively
slightly in a fairly wide range of the parameters of the problem.

Equations (4)–(7) are integrated numerically for different ratios of the particle size to the channel width. We
set Re = 104 and ρ ⁄ ρp = 4.5⋅10−4 in all the calculated variants. The particle trajectories in the channel are given in
Fig. 3. The solid curves show the particle trajectories calculated without allowance for the influence of the Saffman
force, whereas the dashed curves show those obtained with allowance for the action of the lift force (for φS = 1). Dif-
ferent groups of curves (solid and dashed ones) correspond to particles escaping from the upper and lower walls of the
channel for the same values of the longitudinal coordinate (xp0 = 5) and other parameters of the problem. When ω =
1 (bilateral injection of the same intensity), the results are consistent with the data obtained in [11], where fluid flow
in a channel is described based on complete Navier–Stokes equations.

The influence of the lift force on the trajectories of motion of a particle escaping from the upper permeable
channel wall is insignificant, on the whole, and becomes lower, the larger the particle size. At the same time, the Saff-
man force qualitatively changes the trajectories of a particle escaping from the lower channel wall. Further increase in
the rate of injection from the lower channel wall (with increase in the value of ω) leads to a decrease in the role of
the Saffman lift force in formation of the pattern of particle motion (particularly, in short channels (L < 15h)). The cal-
culation results show that the influence of the corrections (described by the function φS) on the inertia of the particle
and the gradient nature of the flow does not lead to a qualitative and quantitative change in the pattern of particle mo-
tion. In modeling two-phase flows in channels with injection, we may disregard these corrections, using the value CS
= 6.46 for the proportionality factor in representation of the Saffman force.

The results of numerical modeling show that allowance for the thermophoresis force for θ < 2.5 does not lead
to a qualitative and quantitative reconstruction of the pattern of particle motion. Extension of the model to higher θ
values requires that one allow for the temperature dependence of the carrier-medium density.

The data obtained are consistent with analytical evaluations. Since we have v << u in the channel, disregarding
the component of the drag force in the projection onto the y axis and allowing for (1) (here, ∂v ⁄ ∂x = 0), for the ratio
of the Saffman force to the drag force we obtain the following estimate:

Fig. 2. Profiles of the longitudinal (a) and transverse (b) velocity components
for ω = 0: 1) Re = 0; 2) 10; 3) 20; 4) 102; 5) 103.
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fS

fd
 = 

CS

6π
 
rp

h
 Re xp ϕ′ (y)



1 ⁄ 2
 D Rep,v

1 ⁄ 2 .

The flow is low-gradient (∂u ⁄ ∂y → 0) in the central part of the channel and near its walls for ω = 1; therefore, the
Saffman force is smaller than the force of hydrodynamic drag. A substantial influence of the Saffman lift force on the

Fig. 3. Trajectory of motion of a particle in the channel for δ = 2.5⋅10−4 (a
and b) and 4.0⋅10−4 (c and d) and vw = 0 (a and c) and 0.2 (b and d): 1) par-
ticles escape from the upper channel wall, 2) from the lower wall.

Fig. 4. Change in the particle velocity along the channel axis for δ = 4.0⋅10−4

for different points of escape of the particle from the lateral channel surface: 1)
xp0 = 1; 2) 3; 3) 5.
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motion of the impurity would be expected when a boundary layer is formed in the vicinity of the lower channel wall
(for ω = 0).

The relative contribution of the thermophoresis force is found from the relation

ft
fd

 = Ct 
2λ ⁄ λp

1 + 2λ ⁄ λp
 Re 

ϑ′ (y)
xpϕ (y) 1 − k

 .

The influence of the thermophoresis force becomes weaker with distance from the left-hand boundary of the computa-
tional domain (the particles are accelerated). The thermophoresis force exerts an appreciable influence on the motion
of finely divided particles (k D 1) for fairly high temperature gradients.

Figure 4 shows the change in the longitudinal component of the particle velocity along the channel axis (for
δ = 4.0⋅10−4). The dashed line corresponds to the change in the fluid velocity. The given results show that the particle
velocity changes virtually linearly along the coordinate x (except for the small initial portion which is the shorter, the
smaller the particle size). This circumstance makes it possible to replace the integration of the equation of motion of
a particle in the projection onto the x axis by relation (13), which considerably reduces the time of numerical calcula-
tion. The same effects also occur in particle motion in a turbulent flow, which will make it possible to use the data
obtained for prediction of the motion of an impurity under more complicated conditions.

Conclusions. From the data of the numerical modeling, we have established the influence of the Saffman
force and the thermophoresis force on the formation of the pattern of motion of an impurity in a channel with injec-
tion as a function of the particle size and the ratio of the rates of injection from the channel walls. The calculation
results are important for construction of a model of interaction between a condensed particle and a carrier flow in
modeling two-phase flows in the combustion chambers of solid-propellant rocket engines within the framework of the
model of interpenetrating continua or the discrete-trajectory approach.

NOTATION

B, coefficient in the representation of the force of action of the carrier flow on a particle; C, proportionality
factor; f, force per unit mass, N/kg; g, function describing the transverse velocity component as a function of the co-
ordinate y; h, channel width, m; k, coefficient of velocity nonequilibrium of phases in the longitudinal direction; L,
channel length, m; m, mass, kg; n, concentration, 1/m3; N, number of particles; Pe, Pe′clet number; r, radius, m; r, ra-
dius vector, m; Re, Reynolds number; s, index of the geometry of flow; S, sphere surface; t, time, sec; T, temperature,
K; u and v, velocity components, m/sec; v, velocity vector, m/sec; x, y, coordinates, m; α, correction for the gradient
nature of the flow; γ, exponent; δ, ratio of the particle radius to the channel width; ∆, discriminant of the characteristic
equation; η, transformed transverse coordinate; θ, ratio of the temperatures of the lower and upper channel walls; ϑ,
function describing the dependence of the temperature on the coordinate y; λ, thermal conductivity, W/(m⋅K); µ, dy-
namic viscosity, kg/(m⋅sec); ν, kinematic viscosity, m2/sec; ρ, density, kg/m3; φ, functional dependence; ϕ, function de-
scribing the dependence of the longitudinal velocity component on the coordinate y; χ, initial velocity nonequilibrium
of phases; ω, ratio of the rates of injection from the lower and upper channel walls. Subscripts and superscripts: d,
drag; f, fluid particle; m, maximum; p, particle; S, characteristics of the Saffman force; t, thermophoresis; v, shear; w,
channel wall; x and y, projections onto the x and y axes; 0, initial instant of time; 1 and 2, lower and upper channel
walls; ′, derivative with respect to the coordinate y.
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